|
A sparse MPC solver for walking motion generation (old version).
|
Once Schur complement is formed we can use Cholesky decomposition
. to obtain Langrange multipliers.
![$ \mbm{L} = \left[ \begin{array}{cccccc} \mbm{L}_{11} & \mbm{0} & \mbm{0} & \dots & \mbm{0} & \mbm{0} \\ \mbm{L}_{21} & \mbm{L}_{22} & \mbm{0} & \dots & \mbm{0} & \mbm{0} \\ \mbm{0} & \mbm{L}_{32} & \mbm{L}_{33} & \dots & \mbm{0} & \mbm{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \mbm{0} & \mbm{0} & \mbm{0} & \dots & \mbm{L}_{N-1,N-1} & \mbm{0} \\ \mbm{0} & \mbm{0} & \mbm{0} & \dots & \mbm{L}_{N,N-1} & \mbm{L}_{NN} \end{array} \right], $](form_51.png)
Directly from observation we have

In the second step
is computed by forward substitution, and in the third step, forming
requires the computation of the Cholesky factors of
.
1.8.0