|
A sparse MPC solver for walking motion generation (old version).
|
Inequality constraints:

Objective function + logarithmic barrier:

and
are defined as follows:


A diagonal 6x6 matrix, which lies on the main diagonal of
and corresponds to state k, is denoted
. Each such matrix has only two non-zero elements: (1,1) and (4,4).
The Schur complement for the new objective function is defined in a similar way as for the original objective (see 'Schur complement'). The part of the hessian corresponding to the vector of states is defined differently though.
![$\\ \bar{\mbm{E}}_c\tilde{\mbm{H}}_c^{-1}\bar{\mbm{E}}_c^T = \\ = \left[ \begin{array}{ccccc} \mbm{M}_{11} & -\mbm{M}_{11}\mbm{A}^T & \mbm{0} & \mbm{0} & \mbm{0} \\ -\mbm{A}\mbm{M}_{11} & \mbm{A}\mbm{M}_{11}\mbm{A}^T + \mbm{M}_{22} & -\mbm{M}_{22}\mbm{A}^T & \mbm{0} & \mbm{0} \\ \mbm{0} & -\mbm{A}\mbm{M}_{22} & \mbm{A}\mbm{M}_{22}\mbm{A}^T + \mbm{M}_{33} & -\mbm{M}_{33}\mbm{A}^T & \mbm{0} \\ \mbm{0} & \mbm{0} & -\mbm{A}\mbm{M}_{33} & \mbm{A}\mbm{M}_{33}\mbm{A}^T + \mbm{M}_{44} & -\mbm{M}_{44}\mbm{A}^T \\ \mbm{0} & \mbm{0} & \mbm{0} & -\mbm{A}\mbm{M}_{44} & \mbm{A}\mbm{M}_{44}\mbm{A}^T + \mbm{M}_{55} \end{array} \right] $](form_117.png)
where
and
.
1.8.0